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ABSTRACT

Drums modelling is of special interest in musical source separa-
tion because of its widespread presence in western popular mu-
sic. Current research has often focused on drums separation with-
out specifically modelling the other sources present in the signal.
This paper presents an extensive study of the use of regularizations
and constraints to drive the factorization towards the separation be-
tween percussive and non-percussive music accompaniment. The
proposed regularizations control the frequency smoothness of the
basis components and the temporal sparseness of the gains. We
also evaluated the use of temporal constraints on the gains to per-
form the separation, using both ground truth manual annotations
(made publicly available) and automatically extracted transients.
Objective evaluation of the results shows that, while optimal regu-
larizations are highly dependent on the signal, drum event position
contains enough information to achieve a high quality separation.

1. INTRODUCTION

Drums transcription has been regarded as an important task by
the Music Information Retrieval (MIR) community and in the past
decade there has been increasing interest in developing techniques
for separating the drums track from music mixes. [1] derive a
method based on synthetic drums sound pattern matching. The
matching is performed using the correlation as the objective func-
tion. [2] computes the presence of percussive events based on the
temporal derivative of the spectral magnitudes on the decibel scale.
The separation is then performed by spectral modulation, weight-
ing the spectral bins by the individual bin derivatives previously
computed. [3] propose another method based on spectrotemporal
features. However in this case both the temporal and frequency
derivatives are taken into account. [4] decompose the signal into
a basis of Exponentially Damped Sinusoids (EDS) using a noise
subspace projection approach. This leads to a harmonic/noise de-
composition that is used to extract the percussive sources. [5] use
a template-based pattern matching technique to estimate and sepa-
rate the drums spectra from the rest. The authors show several ap-
plications such as remixing, drum timbre modification and rhyth-
mic sources equalization. [6] propose the use of Non-negative
Matrix Factorization (NMF) and Support Vector Machine (SVM)
classification to perform drum separation. The technique consists
in performing an NMF decomposition of the spectrogram of the
mixture and classifying the basis components of the factorization
using Mel-Frequency Cepstrum Coefficients (MFCC) and an SVM
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trained using isolated drums and harmonic audio recordings. [7]
propose a similar approach where Nonnegative Matrix Partial Co-
Factorization (NMPCF) is used to avoid training harmonic compo-
nents. In [8] the authors propose using the Flexible Audio Source
Separation Toolbox (FASST) to perform an isolation of the drum
components in a mixture. FASST is based on non-negative factor-
ization of a complex spectrum model that contains templates for
specific spectral and temporal patterns which are able to recon-
struct harmonic and percussive components when combined.

The use of temporal constraints on NMF is not new and has
proven useful in several scenarios. [9] use score-based temporal
restrictions on the gains of an NMF decomposition to estimate pi-
ano notes attacks.

Here we address the separation of drums in polyphonic music
mixtures, typically containing lead vocals. One approach to the
separation of the singing voice of special interest to us is the SIMM
(Smoothed Instantaneous Mixture Mode) by [10], which uses a
source/filter decomposition based on NMF.

2. PROPOSED METHOD

We propose an extension to the SIMM method that includes an
extra additive spectral component to represent percussive events.
The proposed spectrum model can be defined as V̂ = X̂v +

X̂m′ + X̂d, where the additional component X̂d corresponds to
the estimation of the drums. The lead vocals spectrum X̂v is de-
composed in multiple factors representing a source-filter harmonic
model, the other components are decomposed into two factors
X̂m′ = Wm′Hm′ and X̂d = W dHd. It is trivial to show that
without any further modifications and with a specific ordering of
the multiplicative updates, the proposed spectrum model is equiva-
lent to SIMM with Wm = [Wm′ ;W d] and Hm = [Hm′ ,Hd].

As in the original SIMM the actual separation is performed by
Weiner filtering using the drums spectra estimation X̂d. Thus the
time-frequency mask becomes:

md =
X̂d

X̂v + X̂m′ + X̂d

(1)

In the following sections we show different techniques in or-
der to achieve the differentiation between the drums and the other
musical accompaniment sources in X̂d and X̂m′ . First we present
a method based on NMF regularizations and then one that uses in-
formation specific to the processed signal to apply constraints to
the factorization.
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2.1. Training

We study the use of semisupervised NMF in conjunction with
the SIMM method for the separation of drums sources. In this
scenario we first learn a set of basis components W t

drums us-
ing recordings of drums in isolation and then use these compo-
nents during the separation stage. The learned components will
be used as constants and complemented with NWd′ basis compo-
nents that will be free and learned during the separation W d =
[W t

drums;W d′ ]. We trained basis for two different types of per-
cussive instruments: snare drums and cymbals. The bass drum was
not used for training since preliminary results showed that by do-
ing so, a large amount of low frequency content from other sources
was assigned to the drums. The result is two sets of learned basis
components W t

drums = [W t
snare;W

t
cymbal].

2.2. Regularizations

[11] proposed the use of temporal continuity and sparseness reg-
ularizations on the gains of an NMF process to isolate sustained
harmonic sources. We extend these regularization terms to the the
basis factor and integrate them into the proposed spectrum model
based on SIMM.

In our proposed method we apply different regularizations to
the factors X̂m′ and X̂d in order to disambiguate between drums
and other musical accompaniment. Drums are characterized by
their wideband smooth spectral shape and their sparseness in the
time axis, since they are often transient sounds with a short de-
cay and a shorter attack. On the other hand we assume the spec-
tral evolution of the other musical accompaniment to be smooth in
time. We define two additional regularization terms to include this
prior knowledge into the factorization. We propose a regulariza-
tion on the basis that penalizes frequency domain discontinuities
in the spectra. The term is similar to the one proposed by [11] that
penalizes temporal discontinuities of the gains. In our case the
smoothness is enforced on the frequency axis of the basis compo-
nents. The resulting frequency continuity regularization is defined
as:

JfcW (W ) =

NW∑
w

1

σωw2

Nω∑
ω

(
[W ]ω,w − [W ]ω−1,w

)2
(2)

where the standard deviation of the components is estimated as

σωw =
√

(1/Nω)
∑Nω
ω ([W ]2ω,w). The term w represent the basis

index, ω the frequency index and t the time index (columns in H).
The gradient of the regularization then becomes:[

ϕfcW (W )
]
ω,w

= 2Nω
2[W ]ω,w−[W ]ω−1,w−[W ]ω+1,w∑Nω

i [W ]2w,i

−Nω
2[W ]ω,w

∑Nω
i=2([W ]i,w−[W ]i−1,w)

2

(
∑Nω

i [W ]2i,w)
2 (3)

which can easily be expressed as an addition of positive and nega-
tive terms ϕfc

+

W and ϕfc
−
W .

We also propose a regularization on the drums activation ma-
trix Hd that penalizes gains that are non-sparse in time. The reg-
ularization is a simple variation on that proposed by [11].

J tsH(H) =

NT∑
t

NW∑
w

g([H]w,t /σt) (4)

where g(·) is a function that penalizes non-zero gains, in our case
g(x) = |x|. The only difference between the regularization term
proposed in [11] and the one we propose is that the standardization
is done with respect to each time frame instead of each basis. The
gradient then becomes:[

ϕtsH(H)
]
w,t

= 1√
1

NW

∑NW
i [H]2i,t

−
√
NW

[H]w,t

∑NW
i [H]i,t(∑NW

i [H]2i,t

)3/2 (5)

Due to the additive nature of the spectrum model and reg-
ularizations, the derivation of the multiplicative update rules are
quite straightforward. The multiplicative update rule for accompa-
niment Wm′ remains the same as for Wm in the original SIMM
method. The update rules for the Hm′ W d and Hd become:

Hm′ ←Hm′ ⊗
W>

m′

(
V̂

(β−2) ⊗ V
)
+ ϕ−Hm′

W>
m′ V̂

(β−1)
+ ϕ+

Hm′

(6)

Hd ←Hd ⊗
W>

d

(
V̂

(β−2) ⊗ V
)
+ ϕ−Hd

W>
d V̂

(β−1)
+ ϕ+

Hd

(7)

W d ←W d ⊗

(
V̂

(β−2) ⊗ V
)
H>d + ϕ−W d

V̂
(β−1)

H>d + ϕ+
W d

(8)

where the gradient terms are defined as follows:

ϕ−Hm′
= αtcϕ

tc−
Hm′

, ϕ−Hd
= αtsϕ

ts−
Hd

, ϕ−W d
= αfcϕ

fc−
W d

ϕ+
Hm′

= αtcϕ
tc+

Hm′
, ϕ+

Hd
= αtsϕ

ts+

Hd
, ϕ+

W d
= αfcϕ

fc+

W d
(9)

and the parameters αtc ∈ <+, αts ∈ <+ and αfc ∈ <+ control
the enforcement of the temporal continuity of the accompaniment
gains Hm′ , the temporal sparseness of the drums gains Hd and
the frequency continuity on the drums basis W d respectively.

The regularizations can improve the separation between the
musical accompaniment and the percussive components in the
SIMM method. This separation is performed in an unsupervised
manner since no signal-specific knowledge is needed. However
the parameters controlling the regularizations may have a large in-
fluence on the results.

2.3. Constraints

Another extension proposed to the SIMM method for isolating the
percussive instruments is the use of constraints. In this extension
we assume the temporal positions of the drum events are known.
This information is used to restrict the activation of the gains of
the percussive components, reducing the degrees of freedom of the
factorization problem. The constraints are performed in a manner
similar to [9].

We consider a set of percussive sources md ∈ [1, NMd]. We
denote tmd

e for e ∈ [1, Ne] the frame indices of the attacks of the
events of the percussive source md. The dictionary W d is the
set of basis components for all the percussive sources, with NWs

components assigned to each percussive source. The constraints
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are set in the form of initializations to 0 in the corresponding gains
matrix Hd:

Hd[w, t] =


γ, if tmd

e − (1− α)τ < t < t
md
e + ατ

and (m− 1)NW
s < w < mNW

s ∀md, te

0, otherwise
(10)

where γ > 0 is a random positive value, τ is a parameter that
controls the size of the event region and α controls the position of
the active region around the event position.

We examine two different ways of supplying the drum event
positions tmd

e . We propose an unsupervised approach based on
transient estimation and two scenarios with user-supplied annota-
tions.

2.3.1. Transient Analysis

The transient analysis used to evaluate the constraint-based unsu-
pervised method is the same one used in [12]. It is based on the
work by [13] where the spectral peak center of gravitiy is used as a
measure of transient quality. This measure is coupled with a band
analysis and thresholding in order to extract a frame-level deci-
sion about the presence of a percussive event attack. This method
for drum event estimation is quite straightforward and serves as
a baseline for constraint-based blind drums separation methods.
State of the art drum estimation techniques can acheive much bet-
ter results, probably leading to improved separation.

2.3.2. Annotations

Two main scenarios for user-supplied annotations are considered.
The first consists in creating different annotations sets for each of
the drum sounds (bass drum, snare drum, closed hi-hat, open hi-
hat,...). This implies having multiple drum sources NMdind

> 1
in our spectrum model. The second technique uses a single set of
annotations, by merging all the drum sounds together NMdjoin =
1, in order to keep both approaches comparable, the number of
basis components used in the second approach is
NW

s
join = NMdind

NW
s. The annotations of the drum events

were manually performed by an amateur experienced drum player
using the SonicVisualiser software application 1. The annotations
were created using the isolated drum tracks in order to evaluate
the near-optimal separation using a constraint-based method. The
annotations dataset has been made publicly available online 2.

3. EXPERIMENTS

We used the same dataset of multitrack audio recordings with drums
as in [12] to evaluate the proposed methods. A quantitative eval-
uation is done by using the perceptually motivated objective mea-
sures in the PEASS toolbox [14]: OPS (Overall Perceptual Score),
TPS (Target-related Perceptual Score), IPS (Interference-related
Perceptual Score), APS (Artifact-related Perceptual Score). For
all the excerpts we have also computed the near-optimal time-
frequency mask-based separation using the BSS Oracle ([15]) frame-
work. The evaluation measures of the oracle versions of each ex-
cerpt were used as references to reduce dependance of the perfor-
mance on the difficulty of each audio. Therefore the values shown
are error values with respect to the near-optimal version.

1http://www.sonicvisualizer.org
2http://mtg.upf.edu/download/datasets/dreanss

We performed two series of experiments (regularization and
constraints), which evaluate the performances of different meth-
ods.

The first set of tests consists of parameter explorations of the
regularization-based methods (REG). In these experiments we
tested the separation for multiple values of the time continuity
regularization αtc = 25 (SM25), αtc = 50 (SM50), αtc =
75 (SM75), αtc = 100 (SM100) for the non-percussive accom-
paniment basis Wm. We also evaluated the effect of employ-
ing a sparseness regularization αts = 10 (SP10) on the drums
gains. The regularizations for the frequency continuity of the non-
percussive accompaniment has been kept to a fixed value αfc = 1.
These tests were conducted in an unsupervised scenario (UNS)
where all the drum basis components are learned during the sep-
aration and a semisupervised (SUP) case where the basis compo-
nents are learned previously using training data with the drums in
isolation.

In a second series of experiments we evaluated three constraint-
based methods. We compared a blind transient analysis method
(CON-TR) to two annotated methods: individual sources model
(CON-AN-I), and joint sources model (CON-AN-J). We explored
the influence of the main parameter NWs on each method and the
effect of using the SIMM lead voice model with an external an-
notated pitch (CON-TR-NP, CON-AN-I-NP, CON-AN-J-NP). Fi-
nally we performed a comparative evaluation with state of the art
methods THPS-TIK (similar to [12]), HPSS [3] and FASST [8].
The best parameter combination resulting from the parameter ex-
ploration was used in the comparative tests.

4. DISCUSSION

4.1. Regularizations Experiments

In Figure 1 and Figure 2 we can observe the Overall Perceptual
Score (OPS) error relative to Oracle, for the individual excerpts in
the unsupervised and semi-supervised configurations. We can ap-
preciate that in both scenarios the results are not conclusive, since
the OPS error varies a lot with changes in the regularization param-
eters. For the unsupervised configuration, on average we observe
an increase of the error with the amount of temporal continuity
regularization applied to the accompaniment gains. The average
result also shows that the application of the sparseness is detri-
mental since it increases the separation errors. The average results
show very little variation for the semisupervised scenario.

However we do notice that for certain excerpts, such as for
excerpt 0 in the unsupervised case, temporal continuity regular-
ization causes a significant improvement. This improvement for
individual excerpts is more visible still for the temporal sparseness
regularization parameter of the drums gains Hd.

In Figures 3 and 4 we plot a histogram of the improvements
from adding sparseness regularization. This value is computed as
the difference of OPS error obtained with the method using sparse-
ness regularization and that obtained without using it. These val-
ues are computed for all the values of the temporal continuity regu-
larization. The histograms show a large variance in improvement.
In some cases the use of αts = 10 creates a large improvement
and in others the opposite.

These results suggest the utility of future investigation of the
dependency of optimal regularization parameters on the data, and
the potential for deriving methods to estimate optimal regulariza-
tion for each excerpt to be analyzed.
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Figure 1: Individual OPS error (%) measures for the drums sep-
aration unsupervised scenario with relation to the regularizations
applied.
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Figure 2: Individual OPS error (%) measures for the drums sepa-
ration semisupervised scenario with relation to the regularizations
applied.

Informal listening to the results confirms the findings that we
show here. In some excerpts the regularization improves the sepa-
ration while in others it is disadvantageous. We can also appreci-
ate that the regularizations behave as expected, controlling the de-
sired spectro-temporal qualities of the estimated sources. In gen-
eral we also observe that semisupervised separation maintains the
bass drum and snare sources better. Unsupervised separation tends
to produce a filtered signal keeping only mid-high components. A
drawback of the supervised version is the greater interference be-
tween lead vocals and the bass line.

4.2. Constraints Experiments

Figures 5 and 6 show the NWs parameter exploration experiment
for the constraint-based method that uses annotations of the indi-
vidual drums sources (CON-AN-I). This is the method with the
most prior information supplied about the mixture and serves as a
maximum for our proposed contraint-based methods. The plot of
the OPS and APS score errors shows that the results vary slightly
depending on the number of basis components assigned to each
drum source NWs. There are several local minima implying that
there is no unique optimal value for all excerpts and drum sources.

In terms of TPS and IPS the number of basis componentsNWs

controls the tradeoff between target fidelity and interference. This
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Figure 3: Histogram of the OPS improvement (%) by using the
sparseness regularization (SP10) in the unsupervised scenario.
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Figure 4: Histogram of the OPS improvement by using the sparse-
ness regularization (SP10) in the supervised scenario.

is an expected result, since a large number of basis components to
reconstruct drum components could lead to overfitting of the mix-
ture spectra and therefore capturing other non-percussive compo-
nents and increasing the interference while at the same time better
reconstructing the target drums.

Figures 7 and 8 show a similar trend when the constraints are
based on generic drums annotations NMdjoin , without making a
distinction between drum sounds (CON-AN-J). In future work we
should investigate optimizing the parameter for each drum type
and its dependence on the number of occurrences in the excerpt.

In Figure 9 we show the effect of implementing such constraint-
based methods as extensions of the SIMM approach, in contrast
to not performing the lead voice estimation (NP). These results
show a reduction of the OPS error (%) in all the constraint-based
methods. This improvement is mainly due to a decrease in inter-
ference and informal listening to the results confirms this finding.
The lead voice is often an energetic component and by specifically
modelling it we significantly reduce the parts of it that are counted
as drum sounds.

Figure 10 shows how these constraint-based methods relate to
other state of the art drums separation approaches. The annotation-
based informed source separation methods show a clear improve-
ment in OPS over the blind techniques. This shows that the de-
velopment of proper temporal estimation of the drum event posi-
tions could lead to significant improvements in blind drums sep-
aration. The difference between annotations of individual drum
sources (CON-AN-I) and generic drum sources (CON-AN-J) is in-
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Figure 5: OPS and APS score errors (%) with relation to NWs for
the constraint-based individual annotation method (CON-AN-I).
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Figure 6: TPS and IPS score errors (%) with relation to NWs for
the constraint-based individual annotation method (CON-AN-I).

significant, from which we can conclude that estimation of general
drums events should be sufficient.

The artifact-related scores (APS) show unexpected results where
the FASST method achieves better averages (negative score differ-
ence) than the Oracle version. This is probably due to the perceptual-
inspired relations in the PEASS framework, since the non-perceptual
related BSSEval results in Figure 11 do not present this behavior.

Finally we observe that the blind transient constraint-based
method (CON-TR-J) does not achieve results comparable to other
blind techniques. The transient detection method is not adapted to
drums and thus is prone to false positives caused by other sources.

Subjective assessment by informal listening to the compara-
tive study confirms the trend presented in Figure 10. The main
shortcoming of the constraint-based methods is that the full decay
of the drums is often not preserved. Increasing the parameter τ
could help reduce this issue, however it would also increase the
amount of noise in the learning process of the drums component
basis during the factorization. In the future studying the relations
between τ and NWd might be useful since together they influence
the amount of overfitting and underfitting of the problem.

5. CONCLUSIONS

We proposed and studied an extension to the SIMM method to per-
form drums separation. The proposed extension makes use of reg-
ularizations and constraints to drive the factorization towards the
separation between percussive and non-percussive music accom-
paniment. We proposed two new regularization terms that consist
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Figure 7: OPS and APS score errors (%) with relation to NWs for
the constraint-based joint annotation method (CON-AN-J).
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Figure 8: TPS and IPS score errors with relation to NWs for the
constraint-based joint annotation method (CON-AN-J).

in small variations of the ones proposed by [11]. The proposed
regularizations control the frequency smoothness of the basis com-
ponents and the temporal sparseness of the gains. These regular-
izations were used together with the temporal continuity regular-
ization of the gains to perform blind drums separation. We also
studied the effect of using a set of pre-trained basis components
for drums sources. The experiments showed that there was no op-
timal value for the strength of the regularizations and that these
were highly dependent on the excerpt.

We evaluated the use of temporal constraints on the gains to
perform drums separation. The technique consists of using the
positions of the drums events in the mixture to limit the regions
of activation of the drums basis. This technique was tested using
both ground truth manual annotations from the isolated tracks and
automatically extracted transients from the mixture. This allowed
us to assess both a glass ceiling and a baseline for this approach.
Results show however that a simple transient estimation technique
is insufficient for this task, compared to the method with man-
ual annotations or other state of the art methods. Additionally we
tested how the number of basis components assigned to each drum
source affects the quality of the separation. The results showed that
the overall performance and the artifacts related score did not vary
much with respect to this parameter. This parameter controlled the
tradeoff between interference and target related scores.

We also observed that it may not be of much benefit to estimate
the positions of the individual drum sounds (closed hi-hat, open
hi-hat, snare drum,...) since this does not significantly improve the
separation results. However it remains to be tested whether using
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Figure 9: Effect of the lead voice estimation on the constraint-
based methods, using NWs = 6.
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Figure 10: PEASS results of the comparative study of the
constraint-based methods for drums separation.

different parameter values per type of drum sound enhances the
results. Furthermore the use of frequency domain constraints spe-
cific to each drum type could also improve the separation. Another
possible future direction could be to perform a two step strategy,
where a subset of the drum positions are first used to estimate the
basis components, and a second step in which the separation is
done loosening the temporal constraints.
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